9,334 research outputs found

    Images in clinical medicine. Percutaneous mitral valvuloplasty

    Get PDF

    Lattice QCD thermodynamics at finite chemical potential and its comparison with Experiments

    Full text link
    We compare higher moments of baryon numbers measured at the RHIC heavy ion collision experiments with those by the lattice QCD calculations. We employ the canonical approach, in which we can access the real chemical potential regions avoiding the sign problem. In the lattice QCD simulations, we study several fits of the number density in the pure imaginary chemical potential, and analyze how these fits affects behaviors at the real chemical potential. In the energy regions between sNN\sqrt{s}_{NN}=19.6 and 200 GeV, the susceptibility calculated at T/Tc=0.93T/T_c=0.93 is consistent with experimental data at 0μB/T<1.50 \le \mu_B/T < 1.5, while the kurtosis shows similar behavior with that of the experimental data in the small μB/T\mu_B/T regions 0μB/T<0.30 \le \mu_B/T < 0.3. The experimental data at sNN=\sqrt{s}_{NN}= 11.5 shows quite different behavior. The lattice result in the deconfinement region,T/Tc=1.35T/T_c=1.35, is far from experimental data

    Temperature dependence of the axial magnetic effect in two-color quenched QCD

    Full text link
    The Axial Magnetic Effect is the generation of an equilibrium dissipationless energy flow of chiral fermions in the direction of the axial (chiral) magnetic field. At finite temperature the dissipationless energy transfer may be realized in the absence of any chemical potentials. We numerically study the temperature behavior of the Axial Magnetic Effect in quenched SU(2) lattice gauge theory. We show that in the confinement (hadron) phase the effect is absent. In the deconfinement transition region the conductivity quickly increases, reaching the asymptotic T2T^2 behavior in a deep deconfinement (plasma) phase. Apart from an overall proportionality factor, our results qualitatively agree with theoretical predictions for the behavior of the energy flow as a function of temperature and strength of the axial magnetic field.Comment: 5 pages, 1 figur

    Phase structure of electroweak vacuum in a strong magnetic field: the lattice results

    Full text link
    Using first-principle lattice simulations, we demonstrate that in the background of a strong magnetic field (around 10^{20} T), the electroweak sector of the vacuum experiences two consecutive crossover transitions associated with dramatic changes in the zero-temperature dynamics of the vector W bosons and the scalar Higgs particles, respectively. Above the first crossover, we observe the appearance of large, inhomogeneous structures consistent with a classical picture of the formation of W and Z condensates pierced by vortices. The presence of the W and Z condensates supports the emergence of the exotic superconducting and superfluid properties induced by a strong magnetic field in the vacuum. We find evidence that the vortices form a disordered solid or a liquid rather than a crystal. The second transition restores the electroweak symmetry. Such conditions can be realized in the near-horizon region of the magnetized black holes.Comment: 10 page

    Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation

    Full text link
    We present the results of first-principle numerical simulations of Euclidean SU(3) Yang-Mills plasma rotating with a high imaginary angular frequency. The rigid Euclidean rotation is introduced via ``rotwisted'' boundary conditions along imaginary time direction. The Polyakov loop in the co-rotating Euclidean reference frame shows the emergence of a spatially inhomogeneous confining-deconfining phase through a broad crossover transition. A continuation of our numerical results to Minkowski spacetime suggests that the gluon plasma, rotating at real angular frequencies, produces a new inhomogeneous phase possessing the confining phase near the rotation axis and the deconfinement phase in the outer regions. The inhomogeneous phase structure has a purely kinematic origin, rooted in the Tolman-Ehrenfest effect in a rotating medium. We also derive the Euclidean version of the Tolman-Ehrenfest law in imaginary time formalism and discuss two definitions of temperature at imaginary Euclidean rotation.Comment: 12 pages, 7 figure

    Generation of electric current by magnetic field at the boundary: quantum scale anomaly vs. semiclassical Meissner current

    Full text link
    The scale (conformal) anomaly can generate an electric current near the boundary of a system in the presence of a static magnetic field. The magnitude of this magnetization current, produced at zero temperature and in the absence of matter, is proportional to a beta function associated with the renormalization of the electric charge. Using first-principle lattice simulations, we investigate how the breaking of the scale symmetry affects this ``scale magnetic effect'' near a Dirichlet boundary in scalar QED (Abelian Higgs model). We demonstrate the interplay of the generated current with vortex excitations both in symmetric (normal) and broken (superconducting) phases and compare the results with the anomalous current produced in the conformal, scale-invariant regime.Comment: 12 pages, 12 figure
    corecore